Please Note if/as applies to reader's interest: There is NOT any *geologically technical* relationship between this theory and the QBX design (July 2010) that I have proposed as related to building construction or modification. But both this theory and the QBX project (published at ChaliceBridge.Com, September 2016) ARE related to earthquake threat mitigation. ~ cp Elaboration this page.

THE HIDDEN FIRE - Release Theory


A Pre-Emptive Volcanic (Pressure and Exudate) Release Theory
About a methodology for reduction of earthquake damage severity,
potentially for redistributing and/or converting seismic pressure release

          WHAT IF we could determine: the optimal method and mechanics for a controlled release of volcanic exudate, including the required optimal location(s), optimal volume(s), etc, for that release ???

IF we can work that out, the key question is:

          Can a complex system or array of accoustic (sound) waves be mechanically created and effectively imposed upon tectonic structures,
          EG: so as to create vibrations that precisely initiate, guide, and structure the breakup of the "sutures" (critical connecting areas of the fault lines) of the Tectonic plates'

          -- in just the right amount, in just the right places, so as to pre-emptively and safely release geologic pressures, volcanic and otherwise, that would otherwise be most likely to cause destructive earthquakes,
          -- thus allowing a much more smooth (less violent) release of disruptive energy ???
          And perhaps I should add to all that, "BEFORE global warming climate changes complicate existing circumstances."

          The apparent official perspective on that (?) goes like or is covered by this:

"Seismologists have observed that for every magnitude 6 earthquake there are 10 of magnitude 5, 100 of magnitude 4, 1,000 of magnitude 3, and so forth as the events get smaller and smaller. This sounds like a lot of small earthquakes, but there are never enough small ones to eliminate the occasional large event. It would take 32 magnitude 5's, 1000 magnitude 4's, 32,000 magnitude 3's to equal the energy of one magnitude 6 event. So, even though we always record many more small events than large ones, there are never enough to eliminate the need for the occasional large earthquake. As for "lubricating" faults with water or some other substance, injecting high pressure fluids deep into the ground is known to be able to trigger earthquakes to occur sooner than would have been the case without the injection. However this would be a dangerous pursuit in any populated area, as one might trigger a damaging earthquake." [ This comes from the USGS FAQ response to the Question, "Can you prevent large earthquakes by making lots of small ones, or by "lubricating" the fault with water or another material?" ]

          I can agree with that and appreciate the safety margin it implies, so far as goes the *symptomatic treatment* paradigm that it comes from and therefore addresses.
          HOWEVER, please note that in the above, I included the words "precisely... in just the right places, so as to..." which of course requires considerable research & development of the technology and application process, and not just imitating natural tectonic dynamics or forcing water into a hole. EG: The approach as proposed at this page is about dealing precisely with, or at least most proximal to, the actual cause(s) of the particular dynamics, not just the symptoms. [7/8+/10]

          Some excerpts, references, and links are below. This is from some brief research via Pacific Northwest Seismic Network (8/4/08), which did bring up some related studies, particularly, "Effects of acoustic waves on stick–slip in granular media and implications for earthquakes."
          What I have not found yet is research on acoustic waves purposely directed to actual interfaces of Tectonic plates, let alone to those under water.

          I hope to find out if, or to what degree, this area of research has been or might be considered. I'm guessing that if deemed feasible for consideration, then we're talking about a fairly long term project. But for all I know, the technical capabilities are more or less available, and they just need to be brought to bear on the challenge. If that is the case, then with enough study, possibly before "the big one," some methodologies and technologies might be developed to forestall it. Even if not soon enough for here and now, there would be plenty of opportunities for success -all around the planet- in the future.
          I admit, I'm just dropping seeds here, and where applicable, I appreciate your tolerating my layperson's word usage. I'm hoping some engineers and scientists have a beer or two as they kick these ideas around. And just MAYBE, in a hundred years, we'll be using volcanic energy to brew that beer. But that's not the point, of course. [~cp, Aug'08]

          Also, What if sound -- listening to the earth with capable management of appropriately designed and placed instruments, while further developing all of same -- can also be used to detect and to map the geological structure "in 3D" at sufficient depths, to thus assess conditions well enough to accurately predict earthquakes (and much more). This thought comes to mind after listening to an interview on KUOW radio about the amazing degree to which we do not know how to assess let alone predict seismic tremors. You may or may not relate, let alone understand, but I simply know in my heart and mind that [the technology of] sound will provide the keys to our understanding the communications of Mother Earth [~cp, 5/13/17].

         -Chris Pringer - Author/Bio/Site Info Below

  To TOP  of PAGE

Some Related Research (Aug'08)

Editor's Note:
          While this research was focused on "seismicity, remotely triggered earthquakes" or "dynamic aftershock triggering" - those triggered by the tremors of other/distant earthquakes or tremors - "static, dynamic, and postseismic stress transfer." It is also about, or draws on studies in, "stick–slip friction in sheared granular layers," "Influence on grain characteristics on the friction of granular shear zones," and "spatial distribution of remote aftershocks." Again, What I did not find was research on acoustic waves purposely directed to actual interfaces of Tectonic plates, let alone to those under water.

The below is excerpted from

"Effects of acoustic waves on stick–slip in granular media and implications for earthquakes" -- Paul A. Johnson[1], Heather Savage[2,3], Matt Knuth[2,4], Joan Gomberg[5] & Chris Marone[2] link to the PDF from Nature.Com    
    [I excerpted what seemed to be the more pertainent parts of this document as related to mechanically creating vibration upon tectonic structures so as to pre-emptively and safely release pressures that would otherwise be most likely cause destructive earthquakes (as per the above, "A Pre-Emptive Volcanic Exudate Release Theory"):

    "... To understand the physics of dynamic triggering better, as well as the influence of dynamic stressing on earthquake recurrence, we have conducted laboratory studies of stick–slip in granular media with and without applied acoustic vibration. Glass beads were used to simulate granular fault zone material, sheared under constant normal stress, and subject to transient or continuous perturbation by acoustic waves. ..."
    "... Vibration perturbs the recurrence period of inelastic stress increase before the failure of major events and induces small-amplitude stick– slip events. In many cases one or more small stick–slip events occur during vibration, as well as cascades of delayed, small-amplitude stick–slip events (Fig. 3a, grey shading). In all cases, application of acoustic waves—even for brief intervals—has a lasting effect, such that successive major stick–slip events exhibit a strain memory of applied vibration manifest by delayed failure, disruption of recurrence interval and extended aseismic creep, despite the violent mechanical re-set that occurs during major stick–slip events (Fig. 3). We find that post-vibration, the regular recurrence does not recover.

    "We also apply acoustic pulses, rather than the longer-duration waves described above. Pulses are more analogous to a single seismic wave in Earth, whereas vibration may be more analogous to the nearsource region where quasi-continuous-wave energy may exist for significant periods of time in the form of aftershocks. Our data show that continuous and pulse modes of dynamic triggering yield similar behaviour. ..."
    "... We posit that acoustic waves disrupt granular force chains, leading to material softening and simultaneous weakening (granular flow), similar to what is described in a recently proposed phenomenological model [19]. The manifestation of the acoustic disruption may take place immediately or later in time (strain ‘memory'). The vibration induced memory itself may be maintained as frictional instability at a number of grain contacts that persist through one or more stick–slip cycles, and is reminiscent of dynamically induced strain memory, known as ‘slow dynamics', observed in nonlinear dynamical experiments on glass bead packs [19]. The memory is also suggestive of statically induced rate-dependent effects observed in sheared granular materials, such as ‘ageing' [7,20]. We attempted to erase vibration-induced memory by ceasing shear loading to allow the material to heal, as well as by changing normal stress to repack the grains, but neither approach succeeded.

    "Our previous work shows that permanent damage to the grains themselves is negligible[12] and therefore cannot be the origin of the behaviours observed. Moreover, acoustical studies in three dimensional glass bead packs under similar wave strain amplitudes, and under (smaller) static stresses of 0.02–0.1 MPa, show no evidence for grain rearrangement; however, the material exhibits very small, irreversible compaction as well as nonlinear-induced modulus softening and slow dynamics[21]. Hertz–Mindlin contact mechanics describe these observations[21]. The compaction we measure in our experiments without vibration is small and does not lead to instability. The addition of vibration shows additional compaction but it is extremely small. Taken together, the observations suggest that minute compaction plays a part in what we observe, but there is no clear evidence suggesting that it is the cause. Our data do not rule out the possibility that instability is abetted, or initiated, by localized compaction (for example, within a shear band in the layer22), which would be invisible to our measurements. Local compaction within a granular material would reduce normal stress at contact junctions, which could lead to stick–slip instability. For the moment, the origin of what we observe when stick–slip is combined with vibration remains unknown.

    "The origin of dynamic earthquake triggering by transient seismic waves is a complex problem. Our results show that granular-friction processes are consistent with two as-yet-unexplained observations in earthquake seismology: (1) small-amplitude waves can trigger both immediate failure and delayed failure relative to the strain transient, and (2) earthquake recurrence patterns are complex. ..."

"Full Methods and any associated references are available in the online version of the paper at"

[end main excerpts]

Selected References from "Effects of acoustic waves on stick–slip in granular media and implications for earthquakes" [excerpted from same document with enumeration kept]:

      1.     Hill, D. P. et al. Seismicity remotely triggered by the magnitude 7.3 Landers, California, earthquake. Science 260, 1617–1623 (1993).
      2    . Gomberg, J., Bodin, P., Larson, K. & Dragert, H. Earthquake nucleation by transient deformations caused by the M57.9 Denali, Alaska earthquake. Nature 427, 621–624 (2004).
      3.     Brodsky, E., Karakostas, V. & Kanamori, H. A. New observation of dynamically triggered regional seismicity: Earthquakes in Greece following the August, 1999, Ismit, Turkey earthquake. Geophys. Res. Lett. 27, 2741–2744 (2000).
      4.     Hough, S. E. Triggered earthquakes and the 1811–1812 New Madrid, Central United States earthquake sequence. Bull. Seismol. Soc. Am. 91, 1574–1581 (2001).
      5.     Gomberg, J., Bodin, P. & Reasenberg, P. A. Observing earthquakes triggered in the near field by dynamic deformations. Bull. Seismol. Soc. Am 93, 118–138 (2003).
      7.     Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Ann. Rev. Earth Planet. Sci. 26, 643–696 (1998).
      13.     Freed, A. M. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet. Sci. 33, 335–367 (2005).
      19.     Johnson, P. A. & Jia, X. Nonlinear dynamics, granular media and dynamic earthquake triggering. Nature 473, 871–874 (2005).
      20.     Hartley, R. R. & Behringer, R. P. Logarithmic rate dependence of force networks in sheared granular materials. Nature 421, 928–931 (2003).

This page was created (8/4/08, rev. 4/11/09) in reference to the
FRIDAY, JUNE 6TH 2008 announcement recreated just below.
The graphic at the top of the page was borrowed from same.


Friday June 6, 2008 7-9:30PM

Friday Night at the Meaningful Movies presents:







Keystone United Church of Christ, 5019 Keystone Place N., Seattle (Wallingford)

0.4 miles west of the I-5 at NE 50th St. Exit - Metro Bus Routes 16, 26 & 44

FREE, AND OPEN TO THE PUBLIC! …but donations very much appreciated!!


We’re having a Workshop on the following Saturday, June 7th at Noon, at the same location:


With Debbie Goetz with the Seattle Office of Emergency Management

(More info below)

Friday, June 6, 2008, 7:00 – 9:30 PM

Film: “CASCADIA: THE HIDDEN FIRE” (60 min, Michael Leinau and Lisa Knorr, 2004),


“Cascadia: Hidden Fire” is the riveting story of scientists and ordinary people caught in extraordinary seismic events and discoveries around the globe. It explains the dynamic geology of our Cascadia Region and how and why earthquakes and other seismic-related events occur. The film provides an education on the current earthquake risk and why it is important for residents here to consider natural hazards such as earthquakes. And what these seismic detectives are learning about Cascadia will ultimately benefit the two billion people that live in super-quake prone areas along the Pacific Rim known as the Ring of Fire.

Join us in a facilitated discussion with Mark Howard from Seattle Office of Emergency Management on how we can work together as neighbors and as a community to better prepare for possible disasters.


(Event is FREE and open to the public! ...but Donations are kindly accepted).

Related Pages

The QBX - Proposed July 2010, the "QBX" or "QEPs" system is a protective pod for a couple or handful of individuals in homes or apartments, designed for surviving earthquakes, complete with communications systems, including for medical vitals & response system w/EMS interface. That is the idea that that I presented for invention, complete with rough[?] blueprint illustrations, to a few folks (sufficiently technically and/or economically knowledgeable) in 2010 to see if they thought it was feasible. They did believe it was, except for having doubts that anyone or organization (including in government) would find enough money for it. I realized later that I had not presented my arguments against that aspect well, and possibly to people with politically influenced motivations about the funding of such projects. (The project presentation included suggestions for smaller and simpler designs, and kits for which, some of which could be "homemade" designs- at least for mechanically capable individuals. I didn't think of it then, but the idea could also be extrapolated to provide for larger numbers of people, except that the smaller rounded units are designed to actually "roll with the punches" as much as they are to resist them - a dynamic more difficult to build into larger designs.) Later in 2012 I found via web search that many similar ideas/ inventions had since arisen, apparently mainly in response to the quake in Fukushima. The QBX project, complete with those same rough[?] blueprint illustrations (& more, as presented in 2010) has been published at ChaliceBridge.Com in September 2016, in spite of my not yet hearing about any similar ideas being considered in the Northwest, in hopes that someone might have both the technical and monetary know-how to consider the idea, and possibly even implement the project in time for "the big one." Note that the proposed QEPS CommSys, once linked to the community "Local Response" system, would also greatly facilitate or directly assist in facilitating the objectives of "Standing Together An Emergency Planning Guide for America’s Communities" (2005) by the Joint Commission on Accreditation of Healthcare Organizations.



Click here to go to Author/Artist/Site Info Page     or     here for What's NEW at ChaliceBridge

Where You Are Now smile :
Thumbnail of ChaliceBridge.Com Organization Chart
Site Map & Organization Chart

Sample Artwork by yours truly:

Animated gif of selection of my work at Fine Art America, as of Dec'12

Above is a selection from my gallery at
ArtistWebsites.Com of Fine Art America (or Pixels.Com) viewable at full resolution, and is available in framed or canvas prints, greeting cards, & more.
A slideshow presentation at this site is at the Chalice Art & Holiday Card Slideshow Pages.
'Karma-learning-Love Shield' - 'What is Sown is Reaped, What is stolen is paid for; Karma is Learning is Justice is Love; The Tree of Life Bears the Flower of Life Bears the Tree of Life...' Shared by Chris Pringer 2010
ChaliceBridge.Com Index Page

index advanced

site search by freefind

VISITS to ChaliceBridge.Com.
The "HITS" count would be many times this number according to Google Stats. Below is an older chart of summarized results - according to Webalizer Stats.

All writing and artwork at Chalicebridge.Com (unless otherwise noted) is by the author/editor, Christopher Pringer of Ballard, WA

Hit Stats Pic

Web site/page © Chris Pringer, 1997 to Present (see individual articles and graphics for © dates by the author/artist)